microsoft-deberta-base
Version: 18
Last updated April 2025
DeBERTa (Decoding-enhanced BERT with Disentangled Attention) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. Please check the official repository for more details and updates. This the DeBERTa XLarge model with 48 layers, 1024 hidden size. Total parameters 750M.

Evaluation Results

We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
ModelSQuAD 1.1SQuAD 2.0MNLI-m/mmSST-2QNLICoLARTEMRPCQQPSTS-B
F1/EMF1/EMAccAccAccMCCAccAcc/F1Acc/F1P/S
BERT-Large90.9/84.181.8/79.086.6/-93.292.360.670.488.0/-91.3/-90.0/-
RoBERTa-Large94.6/88.989.4/86.590.2/-96.493.968.086.690.9/-92.2/-92.4/-
XLNet-Large95.1/89.790.6/87.990.8/-97.094.969.085.990.8/-92.3/-92.5/-
DeBERTa-Large 195.5/90.190.7/88.091.3/91.196.595.369.591.092.6/94.692.3/-92.8/92.5
DeBERTa-XLarge 1-/--/-91.5/91.297.0--93.192.1/94.3-92.9/92.7
DeBERTa-V2-XLarge 195.8/90.891.4/88.991.7/91.697.595.871.193.992.0/94.292.3/89.892.9/92.9
DeBERTa-V2-XXLarge 1,296.1/91.492.2/89.791.7/91.997.296.072.093.593.1/94.992.7/90.393.2/93.1

Model Evaluation samples

TaskUse caseDatasetPython sample (Notebook)CLI with YAML
Fill MaskFill Maskrcds/wikipedia-for-mask-filling evaluate-model-fill-mask.ipynb evaluate-model-fill-mask.yml

Inference samples

Inference typePython sample (Notebook)
Real timesdk-example.ipynb
Real timefill-mask-online-endpoint.ipynb

Sample inputs and outputs

Sample input

{
    "input_data": [
        "Paris is the [MASK] of France.",
        "Today is a [MASK] day!"
    ]
}

Sample output

[
  "airs",
  "airs"
]
Model Specifications
LicenseMit
Last UpdatedApril 2025
Publisher
Languages1 Language