microsoft-biomednlp-biomedbert-large-uncased-abstract
Version: 1
MSR BiomedBERT-large (abstracts only)
- This model was previously named "PubMedBERT large (abstracts)".
- You can either adopt the new model name "microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract" or update your
transformerslibrary to version 4.22+ if you need to refer to the old name.
Citation
If you find BiomedBERT useful in your research, please cite the following paper:@misc{https://doi.org/10.48550/arxiv.2112.07869,
doi = {10.48550/ARXIV.2112.07869},
url = {https://arxiv.org/abs/2112.07869},
author = {Tinn, Robert and Cheng, Hao and Gu, Yu and Usuyama, Naoto and Liu, Xiaodong and Naumann, Tristan and Gao, Jianfeng and Poon, Hoifung},
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Fine-Tuning Large Neural Language Models for Biomedical Natural Language Processing},
publisher = {arXiv},
year = {2021},
copyright = {arXiv.org perpetual, non-exclusive license}
}
microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract powered by Hugging Face Inference Toolkit
Send Request
You can use cURL or any REST Client to send a request to the AzureML endpoint with your AzureML token.curl <AZUREML_ENDPOINT_URL> \
-X POST \
-H "Authorization: Bearer <AZUREML_TOKEN>" \
-H "Content-Type: application/json" \
-d '{"inputs":"The answer to the universe is undefined."}'
Supported Parameters
- inputs (string): The text with masked tokens
- parameters (object):
- top_k (integer): When passed, overrides the number of predictions to return.
- targets (string[]): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower).
Model Specifications
LicenseMit
Last UpdatedAugust 2025
PublisherHuggingFace