bert-base-cased
Version: 18
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives:
unpublished books and English Wikipedia (excluding lists, tables and
headers).
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
used is Adam with a learning rate of 1e-4, \(\beta_{1} = 0.9\) and \(\beta_{2} = 0.999\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not.
Training Details
Training Data
The BERT model was pretrained on BookCorpus , a dataset consisting of 11,038unpublished books and English Wikipedia (excluding lists, tables and
headers).
Training Procedure
Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form:[CLS] Sentence A [SEP] Sentence B [SEP]
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by
[MASK]
. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizerused is Adam with a learning rate of 1e-4, \(\beta_{1} = 0.9\) and \(\beta_{2} = 0.999\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
Evaluation Results
When fine-tuned on downstream tasks, this model achieves the following results: Glue test results:Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
---|---|---|---|---|---|---|---|---|---|
84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
Limitations and Biases
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended tobe fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
Model Evaluation samples
Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |
---|---|---|---|---|
Fill Mask | Fill Mask | rcds/wikipedia-for-mask-filling | evaluate-model-fill-mask.ipynb | evaluate-model-fill-mask.yml |
Inference samples
Inference type | Python sample (Notebook) |
---|---|
Real time | sdk-example.ipynb |
Real time | fill-mask-online-endpoint.ipynb |
Sample inputs and outputs
Sample input
{
"input_data": [
"Paris is the [MASK] of France.",
"Today is a [MASK] day!"
]
}
Sample output
[
"capital",
"beautiful"
]
Model Specifications
LicenseApache-2.0
Last UpdatedApril 2025
Publisher
Languages1 Language