Meta-Llama-3-8B-Instruct
Version: 9
Models from Microsoft, Partners, and Community
Models from Microsoft, Partners, and Community models are a select portfolio of curated models both general-purpose and niche models across diverse scenarios by developed by Microsoft teams, partners, and community contributors- Managed by Microsoft: Purchase and manage models directly through Azure with a single license, world class support and enterprise grade Azure infrastructure
- Validated by providers: Each model is validated and maintained by its respective provider, with Azure offering integration and deployment guidance.
- Innovation and agility: Combines Microsoft research models with rapid, community-driven advancements.
- Seamless Azure integration: Standard Azure AI Foundry experience, with support managed by the model provider.
- Flexible deployment: Deployable as Managed Compute or Serverless API, based on provider preference.
Key capabilities
About this model
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.Key model capabilities
Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Enables applications to be Built with Meta Llama 3.Use cases
See Responsible AI for additional considerations for responsible use.Key use cases
Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.Out of scope use cases
Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.Pricing
Pricing is based on a number of factors, including deployment type and tokens used. See pricing details here.Technical specs
Training cut-off date
The pretraining data has a cutoff of March 2023 for the 8B and December 2023 for the 70B models respectively.Training time
The provider has not supplied this information.Input formats
The provider has not supplied this information.Output formats
The provider has not supplied this information.Supported languages
Llama 3 is intended for commercial and research use in English.Sample JSON response
The provider has not supplied this information.Model architecture
Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.Long context
The provider has not supplied this information.Optimizing model performance
The provider has not supplied this information.Additional assets
Instructions on how to provide feedback or comments on the model can be found in the model README . For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here .Training disclosure
Training, testing and validation
Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.Distribution
Distribution channels
A custom commercial license is available at: https://llama.meta.com/llama3/licenseMore information
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here .Base pretrained models
| Category | Benchmark | Llama 3 8B | Llama2 7B | Llama2 13B | Llama 3 70B | Llama2 70B |
| General | MMLU (5-shot) | 66.6 | 45.7 | 53.8 | 79.5 | 69.7 |
| AGIEval English (3-5 shot) | 45.9 | 28.8 | 38.7 | 63.0 | 54.8 | |
| CommonSenseQA (7-shot) | 72.6 | 57.6 | 67.6 | 83.8 | 78.7 | |
| Winogrande (5-shot) | 76.1 | 73.3 | 75.4 | 83.1 | 81.8 | |
| BIG-Bench Hard (3-shot, CoT) | 61.1 | 38.1 | 47.0 | 81.3 | 65.7 | |
| ARC-Challenge (25-shot) | 78.6 | 53.7 | 67.6 | 93.0 | 85.3 | |
| Knowledge reasoning | TriviaQA-Wiki (5-shot) | 78.5 | 72.1 | 79.6 | 89.7 | 87.5 |
| Reading comprehension | SQuAD (1-shot) | 76.4 | 72.2 | 72.1 | 85.6 | 82.6 |
| QuAC (1-shot, F1) | 44.4 | 39.6 | 44.9 | 51.1 | 49.4 | |
| BoolQ (0-shot) | 75.7 | 65.5 | 66.9 | 79.0 | 73.1 | |
| DROP (3-shot, F1) | 58.4 | 37.9 | 49.8 | 79.7 | 70.2 |
Instruction tuned models
| Benchmark | Llama 3 8B | Llama 2 7B | Llama 2 13B | Llama 3 70B | Llama 2 70B |
| MMLU (5-shot) | 68.4 | 34.1 | 47.8 | 82.0 | 52.9 |
| GPQA (0-shot) | 34.2 | 21.7 | 22.3 | 39.5 | 21.0 |
| HumanEval (0-shot) | 62.2 | 7.9 | 14.0 | 81.7 | 25.6 |
| GSM-8K (8-shot, CoT) | 79.6 | 25.7 | 77.4 | 93.0 | 57.5 |
| MATH (4-shot, CoT) | 30.0 | 3.8 | 6.7 | 50.4 | 11.6 |
Responsible AI considerations
Safety techniques
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We've heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. We recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Prompts and completions are passed through a default configuration of Azure AI Content Safety classification models to detect and prevent the output of harmful content. Learn more about Azure AI Content Safety . Configuration options for content filtering vary when you deploy a model for production in Azure AI; learn more .Safety evaluations
We have conducted a two fold assessment of the safety of the model in this area:- Testing against a benchmark combining CBRNE and adversarial intent, as well as fine tuning the model to help ensure it refuses to provide detailed information to promote potential CBRNE harm.
- Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
Known limitations
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. The pretraining data has a cutoff of March 2023 for the 8B and December 2023 for the 70B models respectively.Acceptable use
Acceptable use policy
Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Enables applications to be Built with Meta Llama 3. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at https://llama.meta.com/llama3/use-policy/ .Quality and performance evaluations
Source: Meta In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here .Base pretrained models
| Category | Benchmark | Llama 3 8B | Llama2 7B | Llama2 13B | Llama 3 70B | Llama2 70B |
| General | MMLU (5-shot) | 66.6 | 45.7 | 53.8 | 79.5 | 69.7 |
| AGIEval English (3-5 shot) | 45.9 | 28.8 | 38.7 | 63.0 | 54.8 | |
| CommonSenseQA (7-shot) | 72.6 | 57.6 | 67.6 | 83.8 | 78.7 | |
| Winogrande (5-shot) | 76.1 | 73.3 | 75.4 | 83.1 | 81.8 | |
| BIG-Bench Hard (3-shot, CoT) | 61.1 | 38.1 | 47.0 | 81.3 | 65.7 | |
| ARC-Challenge (25-shot) | 78.6 | 53.7 | 67.6 | 93.0 | 85.3 | |
| Knowledge reasoning | TriviaQA-Wiki (5-shot) | 78.5 | 72.1 | 79.6 | 89.7 | 87.5 |
| Reading comprehension | SQuAD (1-shot) | 76.4 | 72.2 | 72.1 | 85.6 | 82.6 |
| QuAC (1-shot, F1) | 44.4 | 39.6 | 44.9 | 51.1 | 49.4 | |
| BoolQ (0-shot) | 75.7 | 65.5 | 66.9 | 79.0 | 73.1 | |
| DROP (3-shot, F1) | 58.4 | 37.9 | 49.8 | 79.7 | 70.2 |
Instruction tuned models
| Benchmark | Llama 3 8B | Llama 2 7B | Llama 2 13B | Llama 3 70B | Llama 2 70B |
| MMLU (5-shot) | 68.4 | 34.1 | 47.8 | 82.0 | 52.9 |
| GPQA (0-shot) | 34.2 | 21.7 | 22.3 | 39.5 | 21.0 |
| HumanEval (0-shot) | 62.2 | 7.9 | 14.0 | 81.7 | 25.6 |
| GSM-8K (8-shot, CoT) | 79.6 | 25.7 | 77.4 | 93.0 | 57.5 |
| MATH (4-shot, CoT) | 30.0 | 3.8 | 6.7 | 50.4 | 11.6 |
- Testing against a benchmark combining CBRNE and adversarial intent, as well as fine tuning the model to help ensure it refuses to provide detailed information to promote potential CBRNE harm.
- Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
Benchmarking methodology
Source: Meta For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.Public data summary
Source: Meta The provider has not supplied this information.Model Specifications
Context Length8192
Quality Index0.45
LicenseCustom
Training DataMarch 2023
Last UpdatedOctober 2025
Input TypeText
Output TypeText
ProviderMeta
Languages1 Language
Related Models